600 research outputs found

    Diverse perceptions of smart spaces

    No full text
    This is the era of smart technology and of ‘smart’ as a meme, so we have run three workshops to examine the ‘smart’ meme and the exploitation of smart environments. The literature relating to smart spaces focuses primarily on technologies and their capabilities. Our three workshops demonstrated that we require a stronger user focus if we are advantageously to exploit spaces ascribed as smart: we examined the concept of smartness from a variety of perspectives, in collaboration with a broad range of contributors. We have prepared this monograph mainly to report on the third workshop, held at Bournemouth University in April 2012, but do also consider the lessons learned from all three. We conclude with a roadmap for a fourth (and final) workshop, which is intended to emphasise the overarching importance of the humans using the spac

    High-energy laser-pulse self-compression in short gas-filled fibers

    No full text
    We examine the spatiotemporal compression of energetic femtosecond laser pulses within short gas-filled fibers. The study is undertaken using an advanced nonlinear pulse propagation model based on a multimode generalized nonlinear Schrödinger equation that has been modified to include plasma effects. Plasma defocusing and linear propagation effects are shown to be the dominant processes within a highly dynamical mechanism that enables 100-fs pulses to be compressed into the few-cycle regime after <50 mm of propagation. Once the mechanism has been introduced, parameter spaces are explored and compressor designs suitable for performing high-field experiments in situ are presented. We finish by showing how these designs may be extended to novel wavelengths and driving pulses delivered by state-of-the-art high-repetition-rate lasers

    Experimental demonstration of a high-flux capillary based XUV source in the high ionisation regime

    No full text
    High harmonic generation (HHG) has proven to be a fascinating and incredibly useful nonlinear optical phenomenon and has led to the realisation of tabletop sources of coherent extreme ultraviolet (XUV) radiation. Capillary based geometries in particular have attracted a great deal of attention due to their lengthy interaction regions and the potential to phase-match the HHG process leading to a large increase in XUV flux. Unfortunately due to plasma induced nonlinear and dispersive effects the simple phase-matching mechanism detailed in [1] cannot be scaled to high energy pump pulses and high gas pressures. In this work we have used a computational model [2] to design a capillary that can support a broad interaction region well-suited to quasi-phase-matching (QPM) while simultaneously reducing the effect that XUV reabsorption has on the output flux of the source. This modelling work has involved adjusting both the capillary length and gas density profile (figure 1a) in order to produce rapid oscillations in the radially integrated ionization fraction (figure 1b) coupled with a rapid decrease in gas pressure at the capillary exit. Our theory suggests that these oscillations are driven by a nonlinear self-compression process modulating the intensity of the pump pulse as it propagates through the plasma-filled waveguide [3]. Subsequent experimental work has shown an increase in XUV flux of almost 50 times over our previous capillary-based source (see figure 1c), and preliminary estimates suggest a photon flux of 1012 photons s-1 harmonic-1 in the 45 eV spectral region

    Full characterisation of a focussed extreme ultraviolet beam using a non-redundant array of apertures

    No full text
    This paper presents a novel technique for characterising wavefront curvature and M2, by utilising a non-redundant array (NRA) of apertures to define the plane of investigation through an experimental extreme ultraviolet (EUV) focus. Appropriately sampled, far-field EUV scattering from this NRA is captured on a CCD as the NRA is scanned along the beam axis through the focus. By taking the inverse Fourier transform (IFT), it is possible obtain the spatial autocorrelation functions, via the Wiener-Khinchin theorem, of the exit wave field. By observing the position of the first-order peaks in the autocorrelation as a function of grid translation, both the real and imaginary parts of the complex beam parameter can be determined and the M2 calculated, yielding full characterisation of the embedded Gaussian. Since the periodicity of the grid is known, the planar pixel resolution can be calculated, also allowing the translations movement to be confirmed due to the change in angular acceptance of the fixed CCD. This makes the technique self-calibrating. A high impact, easy to use, cross field technique for full profiling of the embedded Gaussian of probe beams using a non-redundant array of apertures is presented. The technique is experimentally verified in the highly absorbing EUV spectral regime, and is expected to play a significant role in other regimes, where experimental issues prevent the use of existing techniques

    Formula funding and special educational needs

    Get PDF
    This thesis is based on a six year research study and is set against the implementation of Local Management of Schools and the formula funding arrangements for pupils with special educational needs (SEN). The main aim of the research is to investigate the principles and practice for allocating additional resources to provide for pupils with SEN but without statements. Two theoretical perspectives are used: the 'special needs pupil' discourse and the 'school and teacher effectiveness' discourse (Galloway, Armstrong and Tomlinson, 1994). The study is in two main parts. First the theoretical component whereby a critical examination is given to the conceptualisation of special educational needs, to the principles or criteria for evaluating a funding formula and to the historical arrangements for funding pupils with SEN. The second part of the thesis is the empirical component consisting of two national surveys, a case study carried out in two LEAS Mercia and Whiteshire, and computer budget modelling for different funding formulae for all primary and secondary schools in Whiteshire (n=690 schools). Evidence is obtained throughout the study relating to the design of an 'improved' SEN formula which is evaluated according to the principles or criteria of simplicity, equity, effectiveness, responsiveness to needs, efficiency, stability of funding, cost containment and accountabilit

    Single exposure wavefront curvature estimation of high harmonic radiation by diffraction from a regular array

    No full text
    We present a novel technique for estimating the radius of curvature from a single exposure of EUV light from a high harmonic source diffracted by a grating of square apertures

    Towards laser driven table-top coherent diffractive X-ray microscopy of cultured hippocampal neurons

    No full text
    Neurodegenerative diseases such as Alzheimer’s disease have a huge impact on the world population; over 44 million people worldwide and 850,000 in the UK were recorded as living with dementia in 2013. There are numerous theories attempting to explain the cause of Alzheimer’s disease. Histology from the brains of people who had Alzheimer’s disease shows neurofibilliary tangles and amyloid plaques. Their role in the mechanism of disease is not yet completely understood but we envisage that novel imaging techniques may aid understanding. We present initial data collected using confocal fluorescence microscopy and hard X-ray scanning diffractive microscopy (ptychography) on cultured neuron samples plus high resolution large field of view imaging of test samples from a soft X-ray lab based high harmonic generation (HHG) source

    A pseudo-spectral method for the Kardar-Parisi-Zhang equation

    Full text link
    We discuss a numerical scheme to solve the continuum Kardar-Parisi-Zhang equation in generic spatial dimensions. It is based on a momentum-space discretization of the continuum equation and on a pseudo-spectral approximation of the non-linear term. The method is tested in (1+1)- and (2+1)- dimensions, where it is shown to reproduce the current most reliable estimates of the critical exponents based on Restricted Solid-on-Solid simulations. In particular it allows the computations of various correlation and structure functions with high degree of numerical accuracy. Some deficiencies which are common to all previously used finite-difference schemes are pointed out and the usefulness of the present approach in this respect is discussed.Comment: 12 pages, 13 .eps figures, revetx4. A few equations have been corrected. Erratum sent to Phys. Rev.

    Pre-existing virus-specific CD8+ T-cells provide protection against pneumovirus-induced disease in mice

    Get PDF
    Pneumoviruses such as pneumonia virus of mice (PVM), bovine respiratory syncytial virus (bRSV) or human (h)RSV are closely related pneumoviruses that cause severe respiratory disease in their respective hosts. It is well-known that T-cell responses are essential in pneumovirus clearance, but pneumovirus-specific T-cell responses also are important mediators of severe immunopathology. In this study we determined whether memory- or pre-existing, transferred virus-specific CD8 + T-cells provide protection against PVM-induced disease. We show that during infection with a sublethal dose of PVM, both natural killer (NK) cells and CD8 + T-cells expand relatively late. Induction of CD8 + T-cell memory against a single CD8 + T-cell epitope, by dendritic cell (DC)-peptide immunization, leads to partial protection against PVM challenge and prevents Th2 differentiation of PVM-induced CD4 T-cells. In addition, adoptively transferred PVM-specific CD8 + T-cells, covering the entire PVM-specific CD8 + T-cell repertoire, provide partial protection from PVM-induced disease. From these data we infer that antigen-specific memory CD8 + T-cells offer significant protection to PVM-induced disease. Thus, CD8 + T-cells, despite being a major cause of PVM-associated pathology during primary infection, may offer promising targets of a protective pneumovirus vaccine
    corecore